Rotation axes of the head during positioning, head shaking, and locomotion.
نویسندگان
چکیده
Static head orientations obey Donders' law and are postulated to be rotations constrained by a Fick gimbal. Head oscillations can be voluntary or generated during natural locomotion. Whether the rotation axes of the voluntary oscillations or during locomotion are constrained by the same gimbal is unknown and is the subject of this study. Head orientation was monitored with an Optotrak (Northern Digital). Human subjects viewed visual targets wearing pin-hole goggles to achieve static head positions with the eyes centered in the orbit. Incremental rotation axes were determined for pitch and yaw by computing the velocity vectors during head oscillation and during locomotion at 1.5 m/s on a treadmill. Static head orientation could be described by a generalization of the Fick gimbal by having the axis of the second rotation rotate by a fraction, k, of the angle of the first rotation without a third rotation. We have designated this as a k-gimbal system. Incremental rotation axes for both pitch and yaw oscillations were functions of the pitch but not the yaw head positions. The pivot point for head oscillations was close to the midpoint of the interaural line. During locomotion, however, the pivot point was considerably lower. These findings are well explained by an implementation of the k-gimbal model, which has a rotation axis superimposed on a Fick-gimbal system. This could be realized physiologically by the head interface with the dens and occipital condyles during head oscillation with a contribution of the lower spine to pitch during locomotion.
منابع مشابه
Instantaneous rotation axes during active head movements.
Rotation axes were calculated during active head movements using a motion analysis system. The mean rotation axis for 1 Hz head pitch when seated was posterior (6 mm) and inferior (21 mm) to the interaural axis, shifting 16 mm downwards when standing. During seated 2 Hz head pitch the rotation axis was close to the interaural axis, shifting downwards 15 mm when standing. This downward shift sug...
متن کاملLocomotor head movements and semicircular canal morphology in primates.
Animal locomotion causes head rotations, which are detected by the semicircular canals of the inner ear. Morphologic features of the canals influence rotational sensitivity, and so it is hypothesized that locomotion and canal morphology are functionally related. Most prior research has compared subjective assessments of animal "agility" with a single determinant of rotational sensitivity: the m...
متن کاملCombining Central Pattern Generators with the Electromagnetism-like Algorithm for Head Motion Stabilization during Quadruped Robot Locomotion
Visually-guided locomotion is important for autonomous robotics. However, there are several difficulties, for instance, the head shaking that results from the robot locomotion itself that constraints stable image acquisition and the possibility to rely on that information to act accordingly. In this article, we propose a controller architecture that is able to generate locomotion for a quadrupe...
متن کاملGesture Recognition - Control of a Computer with Natural Head Movements
The topic of this article is a basic research considering a humancomputer interaction. The system is still under construction, however its basis – facial features tracking and head pose estimation – is ready to use, thus it could bring a head gesture controlled system into reality. We present an approach to control applications with head movements. We construct an Active Appearance Model (AAM) ...
متن کاملEffect of Head Misalignment in Horizontal & Vertical Dimensions on the Magnification Rate of Digital Panoramic Radiography in Different Parts of the Jaws
Background and aim: Considering the widespread development of implants in dental treatment plans, linear measurements on panoramic radiography are of especial importance. In the present study we investigated the effect of head misalignment up to 15° around vertical and horizontal axes on the magnification rate of digital panoramic radiography in each part of upper and lower jaws. Materia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 5 شماره
صفحات -
تاریخ انتشار 2007